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ABSTRACT

A linear-stochastic model is applied to the 10-day low-pass streamfunction field at 300, 500, and 850 mb for
40 winter seasons of Northern Hemisphere NCEP–NCAR reanalysis data. The linear operator is derived from
the observed multilevel covariances, allowing for statistical representation of nonlinear processes. While all
empirical normal modes of the system are decaying, increase in the streamfunction variance is possible through
nonmodal growth. When the evolution of the streamfunction field following the optimal perturbation is predicted,
the Pacific–North American teleconnection pattern (PNA) is found to be the most probable state of the atmosphere.
Sixty-eight percent (70%) of positive (negative) PNA events are found to follow high projections onto the leading
optimal, suggesting the PNA arises through constructive interference between the decaying modes and may be
treated as a linear response to Gaussian white noise stochastic forcing. Implications for PNA timescale and onset
mechanisms are also discussed.

1. Introduction

Low-frequency variability of the extratropical at-
mosphere, first systematically identified by Wallace and
Gutzler (1981), has been the subject of numerous stud-
ies. Over the past two decades, several mechanisms have
been proposed to explain the growth and maintenance
of some of the dominant low-frequency teleconnections,
such as the Pacific–North American teleconnection pat-
tern (PNA), the Western Pacific teleconnection pattern
(WP), and the North Atlantic oscillation (NAO). As
suggested by Horel and Wallace (1981), one plausible
mechanism involves a poleward-propagating Rossby
wave train that has been excited by an ‘‘external’’ trop-
ical heat source (Hoskins and Karoly 1981; Webster
1981). A second mechanism is barotropic (Simmons et
al. 1983) or combined baroclinic/barotropic (Frederik-
sen 1983) instability. Feedback by high-frequency eddy
vorticity flux forms the core of the third mechanism
(Lau 1988; Branstator 1992; Ting and Lau 1993), which
addresses the question of maintenance of the low-fre-
quency anomalies. The existence of teleconnection-like
patterns in a GCM integration that lacks SST anomalies
(Lau 1981) seems to support the latter two possibilities,
and implies that these patterns may be ‘‘internally’’ gen-
erated and maintained.

Although seemingly separate mechanisms, consid-
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eration of a few points helps us to integrate the above
three mechanisms into a single cohesive picture. First,
the distinction between external forcing (e.g., Horel and
Wallace 1981) versus internal excitation (Lau 1981) may
be unwarranted. While positive SST anomalies are ex-
pected to trigger more frequent and/or stronger positive
convective heating anomalies, it is also conceivable that
positive heating anomalies can arise in the absence of
any positive SST anomalies. For example, a reduction
in static stability, rather than an increase in the SST, can
also lead to enhanced convection. Therefore, it is also
possible that the low-frequency anomalies found by Lau
(1981) are forced by a tropical heat source. A review
of some of the theories and observations given above
can be found in Frederiksen and Webster (1988).

Second, the above result of Simmons et al. (1983)
does not contradict the possibility that the teleconnec-
tion patterns are initiated as forced Rossby wave trains.
In that study, they stress that the use of normal mode
nomenclature should not be interpreted as claiming that
teleconnection patterns begin as infinitesimally small
amplitude perturbations undergoing exponential growth.
From the perspective of a forced wave train, the mech-
anism proposed by Simmons et al. can be viewed as a
forced Rossby wave train acquiring the appropriate form
so as to further amplify by extracting energy from the
background flow.

Third, the long time averaging, typically performed
in diagnostic studies of teleconnection patterns, may
overemphasize the role played by the high-frequency
eddy fluxes. As Feldstein (1998) points out, if time av-
eraging is performed over a period longer than the time-
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scale of the low-frequency phenomenon, the vorticity
equation takes on the following form, 0 ø ]z /]t 5 L
1 N , where the overbar denotes a time mean, z is the
vorticity, and L and N represent linear and nonlinear
terms, respectively. This indicates that sufficiently long
time averaging requires a balance between the linear
terms, for example, relative vorticity advection of the
low-frequency anomaly by the time mean flow, and non-
linear terms, for example, the divergence of the high-
frequency eddy vorticity fluxes. This must be true even
if the low-frequency anomaly grows and decays linearly,
with the high-frequency eddy vorticity fluxes playing
only a marginal role. In fact, Feldstein (2001, manu-
script submitted to Quart. J. Roy. Meteor. Soc., here-
inafter F2001) shows that the linear terms in the vorticity
equation dominate both the growth and the decay of the
PNA, and that the high-frequency vorticity fluxes pro-
long the lifetime of the PNA by only two days.

Considering the three points raised above, a possible
picture emerges that is able to integrate all the findings
summarized in the first paragraph. Suppose that a low-
frequency anomaly is excited by tropical heating, or
perhaps by anomalous extratropical high-frequency ed-
dies. If the anomaly takes the form of, say, the PNA, it
further amplifies by extracting energy from the zonally
varying background flow. As the high-frequency eddies
are reorganized by the low-frequency anomaly (Bran-
stator 1995), the high-frequency vorticity fluxes, in turn,
reinforce the low-frequency flow. Despite this high-fre-
quency eddy feedback, linear dispersion continues, and
the low-frequency anomaly eventually decays.

Given the chaotic nature of the atmospheric flow,
however, it is unlikely that there is a well-defined time-
scale for the ‘‘forcing,’’ whether it is a tropical heat
source or high-frequency eddy vorticity fluxes. Thus, to
the extent that these processes can be collectively mod-
eled as stochastic forcing, the result of Feldstein (1998)
and F2001 suggests that a linear stochastic model [see
(1) below] may be adequate for describing the evolution
of the low-frequency flow. Although none of the tele-
connection patterns was specifically looked for, New-
man et al. (1997) attempted to explore such a possibility
with a linear barotropic stochastic model. They con-
cluded that a linear barotropic model, forced with either
white or red noise, is unable to explain the variance of
the observed low-frequency flow. In addition, Sardesh-
mukh et al. (1997) found that none of the observed
initial perturbations that lead to low-frequency anom-
alies projects strongly onto the growing barotropic op-
timals. This cast further doubt on the linear barotropic
model’s ability to successfully capture the temporal evo-
lution of the observed low-frequency anomaly.

As we will show in this paper, an alternative approach
is to explore the ability of a stochastic model derived
from the observed flow.1 Such a stochastic model im-

1 See Penland and Sardeshmukh (1995) for an application of this
model to the evolution of the tropical sea surface temperatures as-
sociated with El Niño Southern Oscillation.

plicitly retains the statistical properties of processes such
as tropical heating, baroclinicity, nonlinearity, as well
as linear processes involving the observed flow. Success
of the linear stochastic model can provide us with a new
avenue for furthering our knowledge of low-frequency
variability, and also for improving the forecast of shorter
timescale phenomena. The dataset and methodology
used for the analyses are described in section 2, and the
results are presented in section 3. Conclusions and sug-
gested areas of future investigation follow in section 4.

2. Data and methodology

a. Dataset

We analyze 40 winter seasons [December–January–
February (DJF)] from the National Centers for Envi-
ronmental Prediction–National Center for Atmospheric
Research (NCEP–NCAR) reanalysis dataset for 1958–
97, a detailed description of which may be found in
Kalnay et al (1996). The daily vorticity field is converted
to rhomboidal-15 horizontal resolution. The low-pass
(.10 days) streamfunction anomalies at 300, 500, and
850 mb are then calculated, where the anomalies are
relative to the smoothed calendar mean for each day,
thus removing the seasonal cycle. We then obtain the
empirical orthogonal functions (EOFs) by calculating
the covariance matrix of the anomalies among all three
levels in the Northern Hemisphere (NH). The first 40
EOFs (representing 89% of the total variance) are re-
tained, and all subsequent calculations are performed in
EOF space. Sensitivity of the results to the choice of
EOFs will be discussed in section 3. The results are then
transformed to gridpoint space for display. A similar set
of calculations was performed on the low-pass NH 300-
mb streamfunction alone, however, in this work all re-
sults are from the three level calculations unless oth-
erwise specified.

b. Stochastic model

The following discussion closely follows Penland and
Sardeshmukh (1995), and readers are referred to that
work for a more detailed description. Briefly, one of the
simplest possible models of a dynamical system is

dx
5 Bx 1 j, (1)

dt

where x is the state vector (in this case, the vector of
the time-dependent coefficients of our 40 EOFs), B is
a linear matrix, and j is a Gaussian white noise forcing.
Equation (1) is a form of the Langevin equation (Gar-
diner 1985), and thus the most probable state of a system
described by (1) at a time to 1 t is simply

x(to 1 t) 5 exp(Bt)x(to). (2)

The linear system matrix B may be determined from the
statistics of the data, such that
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TABLE 1. Empirical normal modes of B for t o 5 5 days.

Empirical normal modes

Mode
Decay rate

(days21)
Period
(days)

1/2
3/4
5/6
7/8
9/10

11/12

8
100

5
3
4
6

17
19
23

121
45
28

13/14
15/16
17/18
19/20
21/22
23/24

9
7
7
5
6
6

26
29
31

197
54

419
25/26
27/28
29/30
31/32
33/34

9
9
8
8
9

46
55

107
415
160

35/36
37

38/39
40

14
17
20
50

187
`

344
`

B 5 ln[C(t o)C(0)21],21t o (3)

where C(0) 5 ^x(t)x(t)T& and C(t o) 5 ^x(t 1 t o)x(t)T&
are the covariance and lagged-covariance matrices, re-
spectively. Note that while B is linear, it is derived from
the statistics of the full system, and as such includes
information on the statistical effects of nonlinear pro-
cesses. Note also that t in (2) and t o in (3) represent
fundamentally different quantities. Here, t is simply a
period of time over which the system evolves, whereas
t o is the lag chosen for calculating the covariances that
determine the system matrix B.

Letting G(t) 5 exp(Bt), from (2), we can write the
evolution of the L2 norm (variance) of the system as

xT(to 1 t)x(to 1 t) 5 xT(to)GT(t)G(t)x(to). (4)

If xj(to) 5 f j(t), where f j(t) is the jth eigenvector of
GTG, defining E(to 1 t) 5 xT(to 1 t)x(to 1 t) and
E(to) 5 xT(to)x(to), (4) reduces to

E(to 1 t) 5 ljE(to), (5)

where lj is the eigenvalue corresponding to the eigen-
vector f j. Thus, lj gives the amplification factor for E
over the period t , when the eigenvector, f j(t), repre-
sents the corresponding initial state. Those eigenvectors
with lj . 1 are referred to as growing optimal initial
perturbations, or growing optimals. Throughout this
work we will refer to f 1(t), corresponding to the largest
eigenvalue l1, as the leading optimal.

c. Empirical normal modes

The solutions of (1) when the forcing j is neglected,
that is,

dx
5 Bx,

dt

are referred to in the literature as both Principle Oscil-
lation Patterns (POPs) (Hasselmann 1988), and as Em-
pirical Normal Modes (ENMs) (Penland and Ghil 1993).
These solutions take the general form uj exp(bj)cj,
where uj is the jth complex eigenvector of B, bj is the
complex eigenvalue, and cj is an arbitrary complex con-
stant. The ENMs form a complete set, with the contri-
bution of an individual ENM to x given as

xj 5 zjuj,

where zj 5 x is a complex coefficient, and vj is theTvj

jth eigenvector of BT. Here, vj represents the adjoint of
uj, forming a biorthonormal set such that

UVT 5 UTV 5 I,

where U and V contain the u js and vjs, respectively, and
I is the identity matrix.

Table 1 lists the decay rates and periods for the 40
ENMs diagnosed for t o 5 5 days in (3). The ENMs
listed as pairs correspond to complex conjugates of bj,
and single ENMs to real bj. Repeating the ENM analysis

for larger values of t o (not shown) demonstrates that as
t o increases the smallest half-period of the ENMs ap-
proaches t o. In order to avoid the spurious results that
occur when these timescales are similar, t o 5 5 days is
used for all results presented in this paper. Table 1 also
shows that, as expected, all ENMs of the system are
decaying. This immediately leads to the result that any
growth identified through (5) must come through con-
structive interference of the ENMs, and not through
exponentially growing instabilities.

3. Results

a. Growing optimals

The magnitude of the leading eigenvalue of GTG as
a function of lag t is shown in Fig. 1 for t o 5 5 days
in (3). This curve, also known as the Maximum Am-
plification (MA) curve (Penland and Sardeshmukh
1995), indicates that for 40 EOFs, amplification of the
variance of c9, the low-pass streamfunction anomaly, is
possible over a period of 20 days, increasing from a
value of 1.5 for day 1 to a maximum value of 2.7 for
day 5. While we find a number of growing optimals for
various time periods, here we focus only on the leading
optimal. We also see in Fig. 1 that the values of the
MA curve depend somewhat on the number of EOFs
chosen. EOFs with smaller eigenvalues may be cor-
rupted by sampling errors, and may unduly influence
the calculation of B through the matrix inversion in (3)
(Zhang et al. 1997). However, for the range of 30–40
EOFs we see relatively little sensitivity. Thus, all results
presented here will be for calculations using 40 EOFs,
allowing us to retain the maximum amount of variance
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FIG. 1. Maximum amplification curve (leading eigenvalue of
GTG), for t o 5 5 days. Each curve corresponds to a separate EOF
truncation.

from the original data while remaining within the robust
region. We shall also see that this choice of EOFs pro-
vides the best agreement with the observations.

The structure of the leading optimal for day 5, f 1(5),
is shown in Figs. 2a–c. The leading optimal is primarily
concentrated over the north Pacific. At 300 mb (Fig.
2a), a positive–negative couplet lies along the east coast
of Asia, with a stronger couplet of opposite sign farther
downstream. We also find a relatively weaker positive
center over the tropical western Pacific. The pattern at
500 mb (Fig. 2b) is similar to that at 300 mb, with an
eastward shift in the positive center over the tropical
western Pacific. At 850 mb (Fig. 2c), this positive center
shifts still farther eastward, while in the extratropics
only the positive center in the Gulf of Alaska is present.
Together, Figs. 2a–c show the leading optimal is ap-
proximately equivalent barotropic in the extratropics,
and more baroclinic in the Tropics.

By applying Eq. (2) to the leading optimal shown in
Figs. 2a–c, we arrive at the most probable state of the
atmosphere corresponding to the maximum amplifica-
tion of the c9 variance. This state (Figs. 2d–f), obtained
for t 5 5 days, bears a striking resemblance to the
negative phase of the PNA pattern. We find positive
centers over the southeastern United States and the Gulf
of Alaska at 300 mb (Fig. 2d), and negative centers over
western North America and the subtropical Pacific.
These centers of action compare favorably with those
diagnosed in previous observational studies (Wallace
and Gutzler 1981; Barnston and Livezey 1987). At 500
mb (Fig. 2e) we see a weakened version of the 300-mb
pattern, consistent with the relation between Figs. 2a
and 2b. At 850 mb (Fig. 2f), only a single positive center
is apparent, resembling the surface footprint of the ob-
served PNA (Wallace and Gutzler 1981).

While Fig. 2 shows a definite vertical structure to

both the leading optimal and the most probable future
state, our analysis is not qualitatively dependent on the
use of three levels in deriving the linear operator in (1).
Figure 3 shows the same analysis as presented in Fig.
2, where we have used data at 300 mb only, and 35
EOFs (89% variance). The maximum growth now takes
place over 6 days. The similarity between Figs. 2a and
3a and Figs. 2d and 3b demonstrates that sufficient in-
formation is present in the statistics of the 300-mb flow
to capture the leading optimal and its subsequent evo-
lution.

b. Verification of PNA

While section 3a shows that patterns resembling the
PNA evolve from the leading optimal, it is important
to show that Figs. 2d–f and 3b do truly capture the PNA.
Even significant shifts in the phase of the wave pattern
can be difficult to detect by eye. To quantitatively com-
pare our pattern with the conventional PNA, we first
calculate daily values of the projection of the observed
low-frequency c9 field onto the pattern in Figs. 2d–f,
such that

a(t) 5 c9 P cos(u ),O ijk ijk j
ijk

where a(t) is the value of the projection, i and j are the
NH longitude and latitude, respectively, k our three pres-
sure levels, Pijk is the value of our pattern at each grid-
point, and uj is the latitude. We then take monthly av-
erages of a, and compare these values to the Barnston
and Livezey (1987) PNA index for the same months,
available from the Climate Prediction Center (CPC).
The comparison between the two indices is shown in
Fig. 4. Despite the numerous differences in the method
of calculation between these two indices (the CPC index
is derived from the rotated principal components of the
700-mb monthly mean geopotential height anomalies),
they show remarkable agreement. The two series cor-
relate at 0.77, and an examination of the series them-
selves shows close correspondence in the placement of
the peaks and valleys, indicating that the pattern iden-
tified in section 3a is indeed the PNA.

Having determined that Figs. 2d–f show the PNA,
we now turn to the link between the PNA and our lead-
ing optimal. While the PNA is the most probable state
of the atmosphere following a perturbation of the form
shown in Figs. 2a–c, it is not clear that this relationship
will be observed in the real atmosphere. For example,
Sardeshmukh et al. (1997) show that the observed flow
seldom projects onto the growing optimals in their bar-
otropic model. To examine the relationship between the
leading optimal and the PNA in the observed data, we
calculate

b(t) 5 c9 f (5) cos(u ),O ijk 1ijk j
ijk

where b(t) is the projection of c9 onto the leading op-
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FIG. 2. Left: Leading eigenvector f 1 of GTG for t o 5 5 days, and 40 EOFs at (a) 300, (b) 500, and (c) 850 mb. Right:
G(t)f 1(t) for t 5 5 days at (d) 300, (e) 500, and (f ) 850 mb. Contour interval is 0.15, solid contours are positive,
dashed contours are negative, and the zero contour is omitted.
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FIG. 3. As (a) Fig. 2a and (b) Fig. 2d, except that only 300-mb
data are used, the first 35 EOFs are included, and t is 6 days.

timal. The two series, a(t) and b(t), are then normalized
by their respective standard deviations and shown in
Fig. 5 for a segment of the dataset. In general, we see
high values of a are preceded by high values of b.
Quantitatively, if we define |a| . 1 as a PNA event, we
find that 68% (70%) of all positive (negative) PNA
events follow b , 21 (b . 1) within 7 days.

By performing lag composites on the highest b . 1
prior to a negative PNA event, we see that the c9 field
at lag 0 (Fig. 6a) strongly resembles the leading optimal
(compare with Fig. 2a) at 300 mb. As the event pro-
gresses (Figs. 6b–e) we see the upstream centers weaken
and eventually disappear, while downstream develop-
ment takes place over the North American continent.
By lag 15 (Fig. 6f), we see the fully developed PNA
pattern, which closely resembles the PNA pattern de-
rived from the optimal growth analysis (see Fig. 2f),
again confirming that the majority of PNA events follow
high projections onto the leading optimal. A timescale
of 5 days for PNA growth is consistent with that found
by Dole and Black (1990) for their persistent anomalies.
Composites of c9 for those |b| . 1 not followed by a
PNA event as defined above, that is, |a| . 1, still show
a distinct, but smaller amplitude, PNA pattern (not
shown), indicating that the lack of a PNA event is a
function of our event criteria, and not because the PNA
pattern was not present.

Given that the majority of the observed PNA events
follow high projections of the flow onto the leading
optimal, we can also compare the observed amplifica-
tion of the c9 variance with the values derived from the
MA curve (Fig. 1), by calculating

Tx (t 1 t)x(t 1 t)l lg(t ) 5 ,l Tx (t )x(t )l l

where g(tl) is the composite observed amplification fac-
tor as a function of lag tl, where tl 5 0 corresponds to
the time of the local maximum in |b|, provided |b| .
1, t 5 5 days is the growth period, and x is the com-
posite state vector. Figure 7 shows g(tl) for both positive
and negative PNA events. Although there appears to be
a systematic difference between the positive and neg-
ative PNA events, comparison of the maximum values
with those from the MA curve (Fig. 1) shows good
agreement; the average maximum observed amplifica-
tion at 5 days, for 40 EOFs, between the positive and
negative phase events is 2.75, which agrees closely with
the MA value of 2.7. This result further supports the
hypothesis that Figs. 2 and 5 represent the behavior of
the PNA in the real atmosphere.

Figure 7 also demonstrates that the observed ampli-
fication is relatively insensitive to the choice in the num-
ber of retained EOFs in the range of 30–40. For the
calculations made at 300 mb only (not shown), we see
similar values of observed amplification. However, for
this single-level calculation, the amplification factor
from the MA curves, that is, the value of l1, are con-
sistently lower than the observed amplification. For ex-
ample, using 35 EOFs, the MA curve indicates a max-
imum amplification of 2.15, while the observed average
is 3.15. Thus, it appears that while the data at 300 mb
alone contain sufficient information to reproduce the
spatial evolution of the leading optimal of the multilevel
calculation, it cannot as accurately predict the observed
amplification.



15 MARCH 2001 1023C A S H A N D L E E

FIG. 4. CPC PNA index and monthly mean a. Closed circles are for the CPC PNA index and
open circles are for the monthly mean a 3 1028 m2 s21.

c. Tests of assumptions

The results presented in the previous sections are
based on the assumption that (1) provides an accurate
model for the system. However, it is well known that
the atmosphere is not a purely linear system driven by
a Gaussian white noise forcing. Thus, we must consider
the extent to which our data fails to satisfy (1), and the
related influence on our results.

A system that satisfies (1) exactly is subject to a num-
ber of constraints, which are described in detail in Pen-
land and Sardeshmukh (1995). In brief, we find that the
dataset represented by our choice of EOFs is nearly
Gaussian, that the noise covariance matrix is positive-
definite (all eigenvalues are positive), and that our sys-
tem matrix B shows only limited dependence on t o. In
particular, the structure of the leading optimal for 5-day
growth is robust under the choice of t o (not shown).
For a pure linear Markov process, B should be inde-
pendent of t o (Gardiner 1985). However, as it is clear
for our case that the atmosphere will not satisfy these
criteria exactly, the most relevant test is simply how
accurately (1) approximates the NH wintertime flow.

To test the assumptions, we first recalculate the co-
variance matrices in (3) from only the first 20 yr of the
data. We then use these covariances in (2) and (3) to
calculate the error variance as a function of prediction
lead for the remaining years. Figure 8 compares the
observed and expected growth in error variance, nor-

malized by the climatological variance. The expected
growth in error variance arises from neglecting the sto-
chastic forcing in (2), and takes the form

^e(t)e(t)T& 5 C(0) 2 G(t)C(0)GT(t),

following Penland (1989), where e(t) is the error vector
at lead t . As expected, at longer lead times, the cal-
culated error grows faster than the theoretical value,
reflecting the influence of processes not represented in
(1). However, the curves agree to within ø20% of the
climatological variance at most leads, and to within 15%
at 5 days, suggesting these neglected processes do not
significantly degrade the ability of (1) to represent the
system. The curves also demonstrate that even when the
forcing is neglected the model exceeds the skill of a
climatological prediction out to 12 days. Thus, Fig. 8
implies that our model of the system is reasonably robust
despite the failings of (1), lending confidence to the
derived results.

4. Summary and conclusions

In this study we investigate the ability of a linear
stochastic model, derived from the observed data, to
describe the evolution of atmospheric low-frequency
flow. We find that optimal perturbations exist for a
range of growth periods and retained EOFs, and further
find that the leading optimal perturbation evolves into
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FIG. 5. The relationship between the PNA and the leading optimal. Open (closed) circles are for
normalized a (b) for NH winter, 1958/59–1975/76. The x axis shows days of the winter seasons.

a pattern strongly resembling the PNA. The correlation
between our PNA index based on this evolved pattern
and the CPC index is high, confirming that this pattern
is indeed the PNA. Also, the majority of PNA events

in the observed data are found to follow high projec-
tions onto the leading optimal. As all of the empirical
normal modes (ENMs) are decaying, this result sug-
gests that most of the PNA arises through optimal non-
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FIG. 6. Composite streamfunction anomaly at 300 mb from 60 negative phase PNA events for (a) lag 0, (b) lag 11,
(c) lag 12, (d) lag 13, (e) lag 14, and (f ) lag 15. Contour interval is 2 3 106 m2 s21, solid contours are positive, dashed
contours are negative, and the zero contour is omitted.



1026 VOLUME 14J O U R N A L O F C L I M A T E

FIG. 7. Observed amplification of streamfunction variance for the
(a) negative-phase PNA (60 events), and the (b) positive-phase PNA
(57 events). The dotted line is for the 45 EOFs, the heavy solid line
is for the 40 EOFs, the dashed-dotted line is for the 35 EOFs, the
thin solid line is for the 30 EOFs, and the dashed line is for the 25
EOFs.

FIG. 8. Actual and theoretical growth in error variance. Open
(closed) circles are for the observed (theoretical) error variance, nor-
malized by the climatological variance as function of prediction lead
time.

modal growth by constructive interference of decaying
ENMs.

Comparison with previous studies provides some in-
sight into the critical mechanisms captured by our lin-
ear operator. In particular, Newman et al. (1997, 1999,
personal communication) suggest that stochastic mod-
els, constructed from either linear barotropic or linear
balanced baroclinic models, cannot accurately repro-
duce the evolution of the observed low-frequency flow,
such as the PNA. This then implies that the evolution
of the PNA is strongly influenced by baroclinicity
through divergence and/or aspects of nonlinear inter-
actions that cannot be parameterized as a constant lin-
ear damping or white noise forcing. This result is con-
sistent with Feldstein (1998), F2001, and Cash and Lee
(2000), who find that nonlinear interactions between

low-frequency waves and divergence play important
roles in both the PNA and other low-frequency anom-
alies (LFAs) such as blocking, respectively. It should
be noted that while divergence and nonlinearity appear
to play crucial roles in governing the time–evolution
of the PNA, this result is not necessarily inconsistent
with the results of Simmons et al. (1983) noted in the
introduction. Previous studies of the evolution of LFAs
(Cash and Lee 2000; Feldstein 1998; and F2001) have
shown that divergence and nonlinearity strongly influ-
ence the location of the anomalies, and act to retard
downstream advection during the growth phase. In
these studies, the growth of the anomaly results from
linear barotropic interactions with the mean flow. By
inhibiting downstream advection, divergence and non-
linear interactions allow the anomaly to spend more
time in a favorable growth region. Thus, while not
directly responsible for the growth process, they sig-
nificantly influence the overall evolution of the anom-
aly pattern. It is also important to point out that our
single-level stochastic model, which uses data at 300
mb only, also retains information on baroclinicity
through divergence at that level. Given the capability
of this stochastic model, the next natural step is to
compare the empirically derived linear operator used
here and the 300-mb linearized barotropic operator, to
help us understand how the additional processes cap-
tured by the empirical operator act on the data.

The fact that our leading optimal (Figs. 2a–c) shows
a baroclinic structure at lower latitudes over the tropical
Pacific and an equivalent-barotropic character in the ex-
tratropics indicates that tropical convective heating may
be important for triggering the PNA. In this scenario,
a convective heating anomaly acts as a source for a
poleward propagating Rossby wave, as suggested by the
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work of Horel and Wallace (1981), and consistent with
the results of F2001 and our picture described in the
introduction. In order to substantiate this idea, a rela-
tionship between a more direct signature of tropical
heating, such as outgoing longwave radiation, and the
leading optimal needs to be sought. The structure of the
leading optimal in the midlatitudes may be linked to
another possible mechanism of PNA initiation. Dole and
Black (1990) show that zonal wind anomalies over the
central and eastern Pacific precede the onset of their
persistent anomalies. The structure of the leading op-
timal in these regions is consistent with similar zonal
wind anomalies (not shown). Preliminary results from
a vorticity budget analysis suggest that the growth of
the PNA is dependent on the location and configuration
of the leading optimal relative to the stationary waves,
and may be less sensitive to the generation mechanism.
It may be that both tropical convection and midlatitude
dynamics can play a role in PNA onset. F2001 also
finds that PNA onset resembles an initial value problem,
further supporting this hypothesis.

The results presented here also hold implications for
the PNA timescale. Both the MA curve and the com-
posites indicate a PNA timescale of ø10 days. This
scale is consistent with F2001, who examines the time
evolution of the PNA in detail, and with Dole and Black
(1990). However, most studies have examined the PNA
through the use of monthly mean or seasonal statistics,
making direct comparison with the current study diffi-
cult. Given that the PNA pattern represents the maxi-
mum growth in c9 variance, it is not surprising that it
plays a prominent role in the monthly mean statistics.
However, with a timescale of 10 days, a monthly mean
may involve averaging over several events, and possibly
obscure important details of PNA development. In par-
ticular, our results require that a plausible PNA onset
mechanism be able to operate over a period of a few
days. Recalling that the Fourier transform of the delta
function is white in frequency space, from an idealized
perspective, this short-onset timescale is consistent with
the assumption of white noise forcing in the linear-sto-
chastic model.

One method for investigating the PNA onset problem
in more depth involves examination of the ENMs. While
there are a number of difficulties in the physical inter-
pretation of ENMs for a nonlinear data set (Penland
1989; Penland and Ghil 1993; Zhang et al. 1997) due
to degeneracy of the modes, we have found several
ENMs whose spatial patterns and periods are robust
between single and multilevel calculations and over a
range of EOF truncations. It is hoped that examination
of these ENMs and their adjoints will lead to additional
insight into the onset and decay mechanisms captured
by our linear operator, and thus to a deeper understand-
ing of the observed PNA evolution.
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